What you’ll learn
- Apply gradient-based supervised machine learning methods to reinforcement learning
- Understand reinforcement learning on a technical level
- Understand the relationship between reinforcement learning and psychology
- Implement 17 different reinforcement learning algorithms
Course content
01 Introduction and Outline
02 Return of the Multi-Armed Bandit
Requirements
- Calculus (derivatives)
- Probability / Markov Models
- Numpy, Matplotlib
- Beneficial ave experience with at least a few supervised machine learning methods
- Gradient descent
- Good object-oriented programming skills
Description
When people talk about artificial intelligence, they usually don’t mean supervised and unsupervised machine learning.
These tasks are pretty trivial compared to what we think of AIs doing – playing chess and Go, driving cars, and beating video games at a superhuman level.
Reinforcement learning has recently become popular for doing all of that and more.
Much like deep learning, a lot of the theory was discovered in the 70s and 80s but it hasn’t been until recently that we’ve been able to observe first hand the amazing results that are possible.
In 2016 we saw Google’s AlphaGo beat the world Champion in Go.
We saw AIs playing video games like Doom and Super Mario.
Self-driving cars have started driving on real roads with other drivers and even carrying passengers (Uber), all without human assistance.
If that sounds amazing, brace yourself for the future because the law of accelerating returns dictates that this progress is only going to continue to increase exponentially.
Learning about supervised and unsupervised machine learning is no small feat. To date I have over SIXTEEN (16!) courses just on those topics alone.
And yet reinforcement learning opens up a whole new world. As you’ll learn in this course, the reinforcement learning paradigm is more different from supervised and unsupervised learning than they are from each other.
It’s led to new and amazing insights both in behavioral psychology and neuroscience. As you’ll learn in this course, there are many analogous processes when it comes to teaching an agent and teaching an animal or even a human. It’s the closest thing we have so far to a true general artificial intelligence. What’s covered in this course?
- The multi-armed bandit problem and the explore-exploit dilemma
- Ways to calculate means and moving averages and their relationship to stochastic gradient descent
- Markov Decision Processes (MDPs)
- Dynamic Programming
- Monte Carlo
- Temporal Difference (TD) Learning (Q-Learning and SARSA)
- Approximation Methods (i.e. how to plug in a deep neural network or other differentiable model into your RL algorithm)
- Project: Apply Q-Learning to build a stock trading bot
If you’re ready to take on a brand new challenge, and learn about AI techniques that you’ve never seen before in traditional supervised machine learning, unsupervised machine learning, or even deep learning, then this course is for you.
Suggested Prerequisites:
- Calculus
- Probability
- Object-oriented programming
- Python coding: if/else, loops, lists, dicts, sets
- Numpy coding: matrix and vector operations
- Linear regression
- Gradient descent
TIPS (for getting through the course):
- Watch it at 2x.
- Take handwritten notes. This will drastically increase your ability to retain the information.
- Write down the equations. If you don’t, I guarantee it will just look like gibberish.
- Ask lots of questions on the discussion board. The more the better!
- Realize that most exercises will take you days or weeks to complete.
- Write code yourself, don’t just sit there and look at my code.
WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:
- Check out the lecture “What order should I take your courses in?” (available in the Appendix of any of my courses, including the free Numpy course)
Who this course is for:
- Anyone who wants to learn about artificial intelligence, data science, machine learning, and deep learning
- Both students and professionals